Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions
نویسندگان
چکیده
The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the paleogeographic pattern that the north was higher (in elevation) than the south.
منابع مشابه
Continental igneous rock composition: A major control of past global chemical weathering
The composition of igneous rocks in the continental crust has changed throughout Earth's history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr...
متن کاملکانی شناسی و ژئوشیمی کانسنگهای لاتریتی پرمین در شرق شاهیندژ، استان آذربایجان غربی
East of Shahindezh (south of West Azarbaidjan province), as a part of Irano-Himalayan karst bauxite belt, comprises discontinuous layers and lenses of bauxite, laterite, and kaolin within the Ruteh carbonate formation (Middle- Upper Permian). The XRD analyses show that the lateritic ores have rather simple mineralogy, and consist of hematite, boehmite, and kaolinite as major phases accompanied ...
متن کاملMiddle-Late Cambrian acritarchs from the Zardkuh area in the High Zagros Mountains, southern Iran: Stratigraphic and paleogeographic implications
The excellent preservation of the acritarchs, their great abundance, diversity and good stratigraphic control permit establishment of a detailed Middle and Late Cambrian acritarch biozonation. A total of 56 palynomorph species form the basis of 10 local acritarch assemblage zones. Assemblage zones I-II occur in the lower and middle parts of the Member C of the Mila Formation and suggest Early-m...
متن کاملThe Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation.
Continental crust is too Si-rich and Mg-poor to derive directly from mantle melting, which generates basaltic rather than felsic magmas. Converting basalt to more felsic compositions requires a second step involving Mg loss, which is thought to be dominated by internal igneous differentiation. However, igneous differentiation alone may not be able to generate granites, the most silicic endmembe...
متن کاملFe–Al-rich tridymite–hercynite xenoliths with positive cerium anomalies: preserved lateritic paleosols and implications for Miocene climate
We report isotopic and chemical compositions of unusual tridymite–hercynite xenoliths in middle Miocene Niutoushan tholeiites from the southeast coastal area of China. These xenoliths are characterized by positive cerium (Ce) anomalies and extremely high Al2O3 (32–34 wt.%) and total iron oxide (20–22%). They have Sr/Sr of 0.7050–0.7058, eNd(0) values of + 3.2 to + 4.2, Pb/Pb ratios of 18.8–19.1...
متن کامل